

Contents
Executive summary 3

Introduction 6

Scaling DevOps practices with internal platform teams 9

Change management in the DevOps era 24

Security 47

Conclusion 49

Author biographies 50

Who took the survey 52

22020 State of DevOps Report | presented by Puppet and CircleCI

http://puppet.com
http://circleci.com

Executive summary

Internal platform usage is widespread.
• Sixty-three percent of respondents say their company

has at least one self-service internal platform.

• Of those with internal platforms, 60 percent have
between two and four.

• Almost a third of respondents have 25 to 50 percent
of developers using an internal platform

High DevOps evolution correlates strongly with
high use of internal platforms. Highly evolved firms
are six times as likely to report high use of internal
platforms as firms at a low level of DevOps evolution.

A product mindset is key to scaling DevOps and
your platform. Highly evolved firms are nearly twice
as likely to be highly product-oriented as firms in the
middle of their DevOps evolution.

Higher levels of DevOps evolution mean more
self‑service offerings for developers. Highly evolved firms
offer a wide range of self-service capabilities, including:

 – CI/CD workflows
 – Internal infrastructure
 – Public cloud infrastructure
 – Development environments

 – Monitoring and alerting
 – Deployment patterns
 – Database provisioning
 – Audit logging

Top challenges to providing an internal platform

Lack of
time

Lack of
standardization

Lack of technical skills
within the team

Executive summary
Scaling DevOps practices with internal platforms

< Back to Contents 32020 State of DevOps Report | presented by Puppet and CircleCI

http://puppet.com
http://circleci.com

Change management effectiveness increases
as organizations evolve their DevOps practices.
Highly evolved firms are nearly three times as likely to
have highly effective change management as firms at a
low level of DevOps evolution.

The most effective change management is achieved by
firms that emphasize:
• A high degree of testing and deployment automation

• A high degree of automated risk mitigation

• Less rigid and much less manual approval processes

• Writing changes in code

• Allowing employees more scope to influence
change management

• DevOps processes and culture

Highly orthodox approval processes make change
management process inefficient. Firms with highly
orthodox approvals are nine times more likely to have high
levels of inefficiency in their change management process
than firms with low levels of orthodox approval.

Automation makes people more confident their change
management is effective. Firms whose employees believe their
change management is effective are three times more likely to
automate testing and deployment than firms where confidence in
change management performance is low.

Firms that give people a say in the change management
process have better change management.
• Firms that have high employee involvement in the change

management process are more than five times as likely to
have highly effective change management than firms with low
employee involvement.

• Firms that focus on automation the most also involve their
employees the most in their change management process.

• Firms that have the heaviest and most manual process involve
their employees the least in their change management process.

Top challenges to automating
the change management process

Incomplete
test coverage

Organizational
mindset

Tightly coupled
application architecture

Executive summary
Change management in the DevOps era

< Back to Contents 42020 State of DevOps Report | presented by Puppet and CircleCI

http://puppet.com
http://circleci.com

Integrating security fully into the software delivery process
improves your ability to quickly remediate critical vulnerabilities.
• Among companies with full security integration,

45 percent can remediate critical vulnerabilities within a day.

• Just 25 percent of those with low security integration
can remediate within a day.

Integrating security fully into the software delivery process
leads to providing self‑service for security and compliance
validation. Companies that have fully integrated security are more
than twice as likely to offer self-service for security and compliance
validation as firms with no security integration.

Executive summary
Security integration

< Back to Contents 52020 State of DevOps Report | presented by Puppet and CircleCI

http://puppet.com
http://circleci.com

Introduction
We’re in our ninth year of publishing the State of
DevOps Report. During a decade that has redefined
people’s expectations for software — speed of
delivery, quality and security — our ongoing survey
of more than 35,000 technical professionals around
the world has deepened understanding of the
practices that let some organizations streak ahead,
while others are left in the dust.

This year’s survey includes over 2,400 participants
around the world who work in IT, development,
information security and related areas. We recognize
that 2020 was a challenging year to get work done,
much less take a survey, so we appreciate everyone
who took the time to provide thoughtful answers.

For every person who completed the 2020 State of
DevOps survey, we donated $1 to the World Health
Organization COVID-19 Solidarity Response Fund.

We also donated $45,000 — all the funds provided
by our generous sponsors — to nonprofits helping
our most vulnerable communities cope with the
effects of COVID-19:

• WHO COVID-19 Solidarity Response Fund
• No Kid Hungry
• Doctors Without Borders

Thanks to everyone who took the survey and our
sponsors — Armory, CircleCI, New Relic, ServiceNow,
Splunk and Sysdig — for making this possible.

< Back to Contents 62020 State of DevOps Report | presented by Puppet and CircleCI

https://covid19responsefund.org/en/
http://secure.nokidhungry.org/donate
https://donate.doctorswithoutborders.org/
http://puppet.com
http://circleci.com

Why did we investigate these two areas?

• The platform model is a fairly new approach to enabling
application teams. Done right, it simply works, resulting in
faster, more efficient delivery of high-quality software that
meets an organization’s business needs — and at scale.

• Change management is a common bottleneck that
prevents software from being released at a pace that
allows the business to achieve its goals. Efficient, effective
change management improves an organization’s ability to
release software on schedule, at the quality and security
level the business requires.

In Chapter 1, we share our survey findings about the
platform approach, and describe how DevOps principles
inform it. In Chapter 2, we discuss the various approaches to
change management that we discovered among our survey
respondents, and show how applying DevOps principles can
turn change management from a blocker into an enabler of
faster, safer software delivery.

Over the years, we’ve shown that DevOps practices lead to
better performance and organizational outcomes. We have
learned and shared the practices and patterns that enable
organizations to evolve, and to release better software faster.

Despite the notable progress we’ve witnessed, we have
also seen that most organizations struggle to move beyond
the middle stages of their DevOps evolution. They are
rarely able to scale DevOps ways of working beyond the
development, operations, and (sometimes) security teams.

Yet some organizations do succeed. They expand DevOps
practices beyond the initial early-adopting teams, continuing
to evolve and improve across the organization. What makes
the difference? The successful organizations enact deeper
structural changes.

This year’s DevOps survey has shown two areas of
structural change that can yield excellent results:
a platform approach to software delivery and
applying DevOps principles to change management.
When organizations successfully establish a platform
model for enabling application development, or significantly
improve their change management effectiveness, they
achieve the goal that DevOps initiatives aim at: faster and
easier delivery of better quality, more secure software.

 Introduction

< Back to Contents 72020 State of DevOps Report | presented by Puppet and CircleCI

http://puppet.com
http://circleci.com

Expanding DevOps beyond Dev and Ops
In any organization, creating value through software does not
depend solely on good collaboration between developers and
operators. Nearly all adjacent business functions are ultimately part
of the software process, and these need to evolve along with the
technical delivery teams.

Agile, once the exclusive property of engineers, has evolved over
the years, spreading beyond software teams to finance, human
resources, executive leadership teams and more. We hope that
DevOps principles and practices will likewise continue to spread
beyond the dev and ops teams that first began working with them.
This has already happened to some degree with DevSecOps,
FinOps, and probably other new manifestations we haven’t seen yet.

For DevOps principles to spread further, though, people who care
about the movement need to extend their empathy and passion
beyond the teams that are closest to them, and learn to collaborate
with teams whose functions are further away.

Perhaps a few years from now, the term “DevOps” will sound quaint
— even fade away — because so many people and organizations
have fully adopted the DevOps principles of collaboration,
communication, small-batch iteration, feedback loops, continuous
learning and improvement. We certainly hope so.

 Introduction

< Back to Contents 82020 State of DevOps Report | presented by Puppet and CircleCI

http://puppet.com
http://circleci.com

Scaling DevOps practices
with internal platform teams
DevOps is fundamentally about enabling people to collaborate with
each other towards a common business goal. This necessarily includes
the processes and tooling that teams use, but the conversation often
glosses over structural issues within an organization that inhibit good
communication, the free flow of work, and continuous improvement.

Although DevOps practices are well understood and well adopted a decade
into the movement, we still see that most organizations are struggling to
expand DevOps beyond a few pockets of success. One reason DevOps
often fails to expand further is that most enterprises are structured in ways
that create misaligned incentives and lack of accountability or ownership
over the outcomes they’re supposed to be driving.

< Back to Contents 92020 State of DevOps Report | presented by Puppet and CircleCI

http://puppet.com
http://circleci.com

Teams adopting a set of practices alone cannot further
DevOps evolution; you have to make the corresponding
structural changes to optimize the way teams work.

The DevOps evolution model (see chart at right) shows that
organizations do not progress to self-service and security
integration until Stages 4 and 5, after individual people are
given more autonomy to work without manual approval from
outside the team (Stage 3).

Stage 3 is a critical point of convergence — trust has been
built up in Stages 1 and 2; teams are granted more autonomy;
and deployment is no longer a four-alarm fire. At this point,
teams can expand their new ways of collaborating across
more functional boundaries, beyond Dev and Ops.

In Stages 3 to 5 we see a loosening of one-size-fits-all rules
and processes, with an underlying focus on automation.
At these stages, automation has expanded beyond solving
local problems for a single individual or team to an explicit
— and higher — focus on creating value for the business.

This is what it means to scale DevOps practices:
By empowering individuals and teams to rely on their
knowledge and experience — and by automating — you are
able to optimize at an organization-wide scale. You are
now able to focus on eliminating waste across multiple
delivery streams, and help the business achieve its goals.

DevOps Evolution Model

STAGE
1 Normalization

• Application development teams
use version control

• Teams deploy on a standard
set of operating systems

STAGE
2 Standardization

• Teams deploy on a single
standard operating system

• Teams build on a standard
set of technologies

STAGE
3 Expansion

• Individuals can do work without
manual approval from outside the team

• Deployment patterns for building
apps/services are reused

• Infrastructure changes are tested
before deploying to production

STAGE
4

Automated
infrastructure

delivery

• System configurations are automated

• Provisioning is automated

• System configs are in version control

• Infrastructure teams use version control

• Application configs are in version control

• Security policy configs are automated

STAGE
5 Self-service

• Incident responses are automated

• Resources are available via self-service

• Applications are rearchitected
based on business needs

• Security teams are involved in
technology design and deployment

 Scaling DevOps practices with internal platform teams

< Back to Contents 102020 State of DevOps Report | presented by Puppet and CircleCI

http://puppet.com
http://circleci.com

The platform model is an approach we’re seeing more and more often
in the field. It grew out of the idea of product teams (popularized by the
DevOps movement), which are responsible for end-to-end delivery of a
product or service.

This works very well if you have a single product, or just a few products.
But if you have hundreds of products or services, dedicating a product
team to each one is both inefficient and expensive. Imagine 10 teams,
each with its own technology stack, toolchain and processes. You’re going
to have all these teams trying to solve similar problems, spending way too
much time on evaluating technologies, integrating them, maintaining the
infrastructure and more. That’s time that could be better spent building
and improving the actual products your teams are responsible for.

The lack of standardized technologies and processes creates other
problems, too:

• Governance becomes expensive, and nearly impossible to manage.

• Separate stacks reduce knowledge sharing across the organization.

• Many of your product teams don’t actually have the skills or expertise
to operate a full infrastructure and application stack. Many developers
regard infrastructure operations as a distraction from their real work,
so they never really focus on it.

While having multiple end-to-end product teams doesn’t scale well
across large complex environments, a platform model defined by clear
purpose, boundaries and responsibilities does. A platform, built with
the customer in mind, can significantly reduce the toil and overhead of
individual product teams.

Broadly speaking, the platform team provides the infrastructure, environments,
deployment pipelines and other internal services that enable internal customers
— usually application development teams — to build, deploy and run
their applications.

Evan Bottcher’s definition of a digital platform is helpful here: “...a foundation
of self-service APIs, tools, services, knowledge and support which are
arranged as a compelling internal product. Autonomous delivery teams can
make use of the platform to deliver product features at a higher pace, with
reduced coordination.”

Evan points out that self-service is “a key defining characteristic for a good
platform…. Specifically it should allow for self-service provisioning, self-service
configuration, and self-service management and operation of the platform
capabilities and assets.”

Platform model: A new‑ish approach to scaling DevOps

The four fundamental team topologies

If you’re interested in evolving your organizational design and improving
team interactions, we highly recommend “Team Topologies” a website
run by Manuel Pais and Matthew Skelton, and also their book by the same
name. “Team Topologies” describes four fundamental team types: stream-
aligned, platform, enabling, and complicated-subsystem. It also defines three
team interaction patterns — collaboration, X-as-a-Service, and facilitating
— and a team API, which acts as a contract between teams based on code,
documentation and user experiences. “Team Topologies” brings together
different frameworks, models and case studies to provide a functional and
team-centered approach to building complex software systems.

 Scaling DevOps practices with internal platform teams

< Back to Contents 112020 State of DevOps Report | presented by Puppet and CircleCI

https://martinfowler.com/articles/talk-about-platforms.html
https://teamtopologies.com/
http://puppet.com
http://circleci.com

The platform model is often associated with cloud native environments,
but is also appropriate for many other types of architecture, ranging from
modern to legacy. The primary benefits are:

Application teams can be more efficient. They don’t have to be experts
in infrastructure operations or have intimate knowledge of every tool
in the toolchain, so they are able to focus on the product. Application
developers no longer have to wait on a centralized team to provision test
environments or cloud resources for them, and their resulting autonomy
allows them to work much faster.

Improved governance. You can’t effectively manage cost, compliance
and audit if all your applications run on entirely different infrastructure
stacks, using different processes. An effective platform enables efficient
IT governance while empowering application teams to deliver quickly.

An end to context-switching. Constantly switching attention between an
application and infrastructure operations is a huge drain on productivity
(and creativity too). Both individual workers and teams are better off
when they can concentrate on their own particular context. For a deeper
dive into these two different contexts and how the teams interact, see the
sidebar at right, Platform and application: two different contexts.

Continuous infrastructure improvement. A common platform that offers
customer-oriented solutions rather than just raw access to infrastructure
gives your organization more flexibility. Consumers of the platform are
not tied to specific implementations of your infrastructure stack, so the
platform team can iteratively replace and upgrade components, and
needs to interact only minimally with application teams.

Platform and application: two different contexts

Most software developers and operations engineers understand that
switching back and forth between two contexts is a huge cognitive drain.
There’s a good reason for this, apart from the normal human challenge of
context-switching: the details and mindset of each realm are so different,
they call on completely different knowledge and experience sets.

The platform team, as the builder and manager of the platform, has
specific knowledge of infrastructure operations and the centralized tools
they manage. The platform team’s context includes monitoring and
managing performance; current load on the platform and planning for
changes to that load; all changes to storage or the network; issues with the
hypervisor; working with application schedulers, database layers and more.

The application team’s knowledge and context are completely different.
They build, deploy and monitor application components, plus any app
infrastructure that they provision themselves and deploy on the platform.
An application team’s context includes a wide range of considerations,
including customer needs, requirements, values and dependencies.
The team also has technical considerations such as the app’s relationship
to other applications; knowledge of the codebase and its current state;
and knowledge of current features, as well as those under development or
about to be deprecated.

Having a platform team that’s distinct from the application team means
each group is able to make decisions quickly, based on the context they
have. That’s a big part of why the platform model enables faster software
throughput at a higher level of quality.

 Scaling DevOps practices with internal platform teams

< Back to Contents 122020 State of DevOps Report | presented by Puppet and CircleCI

http://puppet.com
http://circleci.com

In our discussion of platforms, we use the term "internal platform" to mean
one that's been built by and for the organization. We're distinguishing
these from platforms that are supplied by outside vendors — for example,
many people think of AWS or other IaaS offerings as "platforms.” In our
survey, we defined platform teams as those that are responsible for
maintaining a self-service platform other teams use to build and deliver
applications or services.

We asked two questions to measure an organization's use of internal platforms:

• What percentage of your developers use self-service platform(s)?

• Which services are available for self-service?

We found platform use is pretty widespread amongst our survey respondents.
Sixty-three percent said they had at least one self-service internal platform.
Of those who had internal platforms, 60 percent had between two and four.
Almost a third of those with internal platforms had 26 to 50 percent of their
developers using a platform.

Use of internal platforms

1 2 3 4 5 6 7 8 9 10
0%

5%

10%

15%

20%

25%

30%

3%3%
4%

6%
7%

11%

27%

16%
17%

6%

1-10% 11-25% 26-50% 51-75% 76-100%
0%

5%

10%

15%

20%

25%

35%

30%

7%

20%

31%

21% 21%
37%
No

Yes
63%

How many internal platforms
does your organization use?

What percentage of your developers
use internal platforms?

Does your organization
use internal platforms?

 Scaling DevOps practices with internal platform teams

< Back to Contents 132020 State of DevOps Report | presented by Puppet and CircleCI

http://puppet.com
http://circleci.com

Platform use and DevOps evolution
We found a strong relationship between DevOps evolution and the use
of internal platforms. Highly evolved firms are almost twice as likely as
mid-level organizations to report high usage of internal platforms, and are
six times more likely to report high usage than low-level organizations.

This finding mirrors Stage 5 of the DevOps evolution model, where
self service is a key practice enabled by a foundation of standardization,
automation and team autonomy. The underlying structural changes needed
to reach Stage 5 reduce complexity in the technology stack, automate
away a lot of toil, and reduce handoffs between teams — all while building
a high degree of trust. These are all the necessary components for building
an internal platform that can deliver higher value for the organization.

Still stuck in the middle

In our 2018 State of DevOps Report, we set out to understand
how organizations evolve as they progress through their
DevOps journey. The analysis produced a five-stage evolution
model (see page 10), with each stage composed of key
practices that define it. We grouped organizations into high, mid
and low levels of DevOps evolution based on how frequently the
key practices were employed.

Once again, we found that the vast majority of firms surveyed
this year (79 percent) are in the group we characterize as
mid-level on the DevOps evolutionary scale — the same as the
last two years. Sixteen percent of the overall sample were in the
high group, an increase of two percentage points over last year.

0%

20%

40%

60%

80%

100%

2018 2019 2020

10% 14% 16%

79% 79% 79%

11% 7% 5%

Mid-level DevOps
evolution

High DevOps
evolution

Low DevOps
evolution

0%

10%

20%

30%

40%

50%

8%

25%

48%

Low Mid-level
DevOps evolution

High

% High use of internal platforms

Use of internal platforms and level of DevOps evolution

 Scaling DevOps practices with internal platform teams

< Back to Contents 142020 State of DevOps Report | presented by Puppet and CircleCI

http://puppet.com
http://circleci.com

Platform as product
The platform team isn’t meant to be an ivory-tower-siloed cadre
that prescribes all architectures, functionality, tooling and more. The
platform team’s job is to provide core capabilities that make it easier
for their customers — that is, other teams — to get work done and
achieve their goals, as well as those of the overall business.

In our experience, it rarely works to require use of the platform
without first collaborating with internal customers to understand
their needs. Paul Ingles, CTO at RVU, explains how his company has
measured the success and effectiveness of platform teams over time.

We never mandated the use of the platform, so setting key
results for the number of onboarded teams forced us to focus
on solving problems that would drive adoption. We also look for
natural measures of progress: the proportion of traffic served
by the platform, and the proportion of revenue served through
platform services are both good examples of that.

— From an interview with Paul Ingles at TeamTopologies.com

You have to make the platform a compelling option. Application
teams should want to use the platform because it’s easier and more
cost-efficient than building and maintaining their own.

An internal platform is a product, not a project

The biggest mistake we see is organizations treating (and funding)
platform development as a project. Just like any other product team,
a platform team needs longevity, consistency and a commitment from
management to be fully successful.

There’s a common tendency in technical organizations to tap a limited
pool of exceptionally skilled people who are well-versed in software
engineering practices, infrastructure as code, continuous delivery, APIs
and more. They’ll be tapped to put together the platform, and then,
as soon as there’s another important demand, they’ll be pulled off the
platform team and put on the new urgent thing.

Don’t do this. The platform team should not be viewed as fungible. If you
want your platform approach to work for the long term, you should get
your organization to commit to the platform as a product, one that will
need and deserves ongoing development and funding.

Give this product time to be developed, tested, rolled out and iterated
on. Over the longer term, you’ll build a competency that will become a
serious competitive advantage for rolling out future revenue-producing
products that can drive your business forward.

 Scaling DevOps practices with internal platform teams

< Back to Contents 152020 State of DevOps Report | presented by Puppet and CircleCI

https://teamtopologies.com/industry-examples/organizational-evolution-accelerating-delivery-of-comparison-services-uswitch
http://puppet.com
http://circleci.com

Evangelize. “If you build it, they will come” is a fallacy when it comes to
building products. Evangelism is critical to the success of any product.
You have to demonstrate the capabilities of your platform in a way your
customers can relate to. You also have to keep developers informed of
changes and updates, publicize upcoming enhancements, and publicly
report metrics on usage and successful outcomes of the product.

Continuously invest in the product. A platform is not a one-and-done
project. Once you’ve assembled a platform team, commit to keeping it in
place so they can continue to develop and improve the platform, meeting
new organizational needs as they arise.

So what makes a platform a product? First and foremost, a platform
should be built to help deliver global optimization and efficiency at
scale. Here are some suggestions for doing that.

Think self‑service and API first. The key characteristic of a platform
product is self-service capabilities consumed via an API. This includes
infrastructure, test environments, deployment pipelines, monitoring, and
more. The platform team provides an interface between the underlying
infrastructure and tooling and the teams consuming those services,
enabling application teams to focus on building their products instead
of nitty-gritty implementation or operational details. Self-service
enables developers to work at their own pace without having to make
requests and wait for fulfillment.

Start locally but build globally. Rather than trying to build the entire
platform in one go — based on unverified assumptions about what
you think application teams need — start with a localized solution and
embrace a lean product management approach. Often an application
team will develop a good solution for themselves that can be used by
more teams. Working with an existing solution can help drive adoption
by enough teams to provide the feedback you need to further develop
functionality that will eventually serve multiple teams.

Focus on developer experience and flow. We can’t stress enough that
empathy is a critical skill set. Empathy means understanding someone’s
position, and it’s impossible to build a good product without having
empathy for your user. We’ve seen platform teams adopt techniques
from the UX discipline, such as empathy maps, to understand their
customers’ needs and pain points. Twilio’s platform team surveys their
developer team to ensure that devs are satisfied with the services the
platform provides, and to continuously improve platform services.

Turning a local solution into a global one

— From “Product for Internal Platforms” by Camille Fournier on Medium

Don’t be ashamed to take over a system from a team that built it with
themselves in mind, if that system seems to be the right general concept for
the wider company... I did this when I built a global service discovery solution
long ago. Another team had first identified the problem and created their
own version of a solution using ZooKeeper. The solution was fine for their
needs, but didn’t solve the general needs of everyone at the company for
global scaling. So I took over the idea of the project, and turned it into true
platform infrastructure, built for a big company and not just one team therein.
There were plenty of product decisions to make as part of that work, but the
core identification of the problem as worth solving was done for me. There is
a lot of interesting work in taking a solution that is locally optimized and
turning it into something that can be used by a diverse set of applications.

 Scaling DevOps practices with internal platform teams

< Back to Contents 162020 State of DevOps Report | presented by Puppet and CircleCI

https://engineering.hellofresh.com/advocating-for-a-product-mindset-within-platform-teams-and-how-we-do-it-at-hellotech-part-1-fc1fbf8ae015
https://www.infoq.com/presentations/twilio-devops
https://medium.com/@skamille/product-for-internal-platforms-9205c3a08142
http://puppet.com
http://circleci.com

We found that organizations whose DevOps evolution has reached an
advanced level are nearly twice as likely to be highly product-oriented
as companies that are in the middle of their DevOps evolution.

Treating your platform as a product means that from the first, you
do the things any good product team does: You gather user stories
and requirements; create a product road map; establish metrics for
adoption and then publicize them; survey customers for additional
learning; and engage in continuous improvement.

Treating your platform as a product also comes with all the rigor
and advantages of the software development discipline. Beyond
requirements gathering, validation, building and shipping internal
features, you should also publish documentation for capabilities and
APIs; offer training and onboarding materials to your customers; and
make a changelog visible to all teams that use the platform.

Last but absolutely not least, empathy for your customer must underlie
everything else we’ve mentioned. All the product-development rigor
in the world won’t help if you don’t take the time to truly listen to
your customers when they tell you what pains them the most, and
what they really desire that will make their jobs easier and their work
go more smoothly. When empathy fills your discovery process, you’ll
have a much better chance of building the right capabilities for your
customers from the start. You’ll also get, as an organization, a much
higher return on your investment in platform development.

Product mindset
We wanted to test one of our core hypotheses: The more you treat
your platform as a product, the more likely your platform is to succeed.
In order to understand whether platform teams exhibit a product mindset,
we asked survey participants whether:

• The platform team gathers requirements from internal stakeholders

• Someone on the platform team acts as a product manager for
the platform(s)

• There is a roadmap for the platform

• The platform team provides onboarding help

• The platform team tests new capabilities with the teams that will use them

The more a respondent agreed with these statements about their
platform team(s), the higher their score for a product mindset.

0%

20%

40%

60%

80%

100%

Low Mid-level High

7% 16%
34%21%

54%

47%72%

30% 19%

DevOps evolution

Average Highly product-orientedNot product-oriented

DevOps evolution and platform team behavior

 Scaling DevOps practices with internal platform teams

< Back to Contents 172020 State of DevOps Report | presented by Puppet and CircleCI

http://puppet.com
http://circleci.com

DevOps evolution and
platform evolution go together
How does a team go from building a few self-service interfaces to
providing a comprehensive internal platform that satisfies a wide range
of organizational needs?

The graph to the right shows how platform offerings change as
organizations progress through their DevOps evolution. The y-axis
shows different types of self-service offerings. In each row representing
a self-service offering, we’ve placed three colored dots, with each color
representing a different level of DevOps evolution. The x-axis represents
the percentage of a group that has adopted a given self-service offering.
You’ll notice the gaps in adoption between groups at low, mid and high
levels of DevOps evolution.

• At a low level of DevOps evolution, organizations offer self-service for
CI/CD workflows, internal infrastructure and public cloud infrastructure.

• Mid-evolution organizations expand their internal platforms, providing
development environments, monitoring and alerting.

• High-evolution organizations tend to offer a wide variety of
internal platforms. This is where you can see more self-service for
deployment patterns, database provisioning and audit logging.

0% 20%10% 30% 40% 50% 60% 70%

% that provide the platform

Mid-level Devops
evolution

High DevOps
evolution

Low DevOps
evolution

CI/CD workflows

Internal infrastructure

Development environments

Monitoring and/or alerting

Public cloud infrastructure

Database provisioning
and/or configuration

Security & compliance
validation

Deployment patterns
(e.g., canary tests,
blue/green, A/B)

Audit logging

Patching

42%

42%

26%

33%

40%

28%

33%

19%

19%

28%

51%

50%

45%

48%

44%

37%

37%

33%

27%

27%

62%

61%

60%

57%

56%

54%

52%

50%

45%

33%

DevOps evolution and self-service offerings

 Scaling DevOps practices with internal platform teams

< Back to Contents 182020 State of DevOps Report | presented by Puppet and CircleCI

http://puppet.com
http://circleci.com

In addition to self-service offerings, we looked at core responsibilities
for platform teams.

• At low levels of DevOps evolution, platform teams are commonly
responsible for workflow automation, standardizing deployment
practices and maintaining infrastructure.

• As organizations evolve further in their DevOps practices, platform
teams expand their responsibilities further, too. They move on
to gathering requirements form product teams and maintaining
continuous delivery toolchains.

% of platform teams
responsible for each area

0% 20%10% 30% 40% 50% 60% 70%

Automate
workflows/processes

Maintain infrastructure

Standardize
deployment practices

Maintain continuous delivery
toolchain

Gather requirements from
product/development teams

Build specific self-service
solutions on top of the platform

Build reusable components

Broker cloud services

Create interfaces between
existing tools

Provide visibility into costs

53%

59%

49%

42%

31%

41%

34%

32%

30%

22%

58%

54%

50%

49%

40%

47%

42%

35%

41%

34%

67%

60%

59%

59%

51%

51%

49%

46%

45%

37%

Mid-level Devops
evolution

High DevOps
evolution

Low DevOps
evolution

DevOps evolution and platform team responsibilities

 Scaling DevOps practices with internal platform teams

< Back to Contents 192020 State of DevOps Report | presented by Puppet and CircleCI

http://puppet.com
http://circleci.com

We asked respondents to tell us which interfaces are used in their
organization for self-service. Developer-friendly interfaces expand significantly
when we compare organizations at a low level of DevOps evolution to those
at a high level, while use of off-the-shelf portals remains flat.

CI/CD tools are the dominant interface used at all levels of
DevOps evolution. CI/CD is now common, and therefore accessible and
friction-free for most engineers. Integration of CI/CD with version control,
email, chat and ticketing systems allows engineers to get immediate
feedback while staying in the flow of their work.

Ticketing system usage increases 16 percentage points from the
low‑evolution companies to those at a high level of DevOps practice.
It is the second-most-used interface at all levels of evolution. We surmise
the increase is due to vendors offering more integrations with DevOps
tools to automate creation and approval of change tickets, based on
sophisticated policies.

When we compare low‑evolution companies to those at a high level of
DevOps evolution, we see expanded use of raw APIs, GitOps, ChatOps
and command line interfaces (CLIs). That’s because these interfaces
allow their users to build on them, creating the workflows they need,
without having to consult anyone in authority. This means the producers
of the interface and the consumers of the interface can easily collaborate;
also, different consumers of the interface can collaborate with each other.
For example, if you have self-service interfaces that can provision virtual
machines, make firewall changes, and attach storage, it’s simple for users
to compose those into higher level workflows to automatically test
pending code changes.

Use of off-the-shelf, enterprise-grade self-service portals neither increases
nor decreases when we compare low-evolution to high-evolution companies.
Our takeaway: The interfaces that get used the most broadly are those that
take advantage of existing skills, and don't require learning new tools or new
working methods. Platform teams should therefore choose to standardize on
tools that integrate well with the tools their customers already use, to avoid
introducing friction into development workflows. The best tools to introduce
are those with rich APIs that enable composability.

Interfaces used for self‑service as organizations evolve their DevOps practices

% of self-service interfaces
0% 20%10% 30% 40% 50% 60% 70%

CI/CD

Ticketing system

Command line interface (CLI)

GitOps

Raw APIs

ChatOps

O�-the-shelf enterprise
self-service portal

Other

58%

42%

28%

12%

7%

12%

33%7%

57%

52%

42%

29%

32%

27%

34%

2%

70%

58%

53%

41%

38%

36%

35%

1%

Mid-level Devops
evolution

High DevOps
evolution

Low DevOps
evolution

DevOps evolution and interfaces for self-service

 Scaling DevOps practices with internal platform teams

< Back to Contents 202020 State of DevOps Report | presented by Puppet and CircleCI

http://puppet.com
http://circleci.com

Providing an internal platform: the challenges
Globally, the top three challenges are lack of time, lack of standardization,
and lack of technical skills within the team.

The differences between responses for companies at different levels of
DevOps evolution are predictable. At a low level of evolution, respondents
selected lack of time as the top challenge, followed by lack of empowerment
from leadership, lack of technical skills and lack of standardization. Lack
of awareness of what the platform would deliver and lack of automation to
build the platform tied for fourth place.

Many of these challenges are mutually reinforcing. Lack of empowerment
from leadership is often due to a team’s inability to express the benefits
of a platform in terms that leadership cares about. Lack of time is often
a symptom of too much manual work and not enough standardization to
create economies of scale.

At the mid-level of DevOps evolution, lack of time is again the top challenge,
followed by lack of standardization. Lack of clearly defined processes
and lack of technical skills are tied for third. To make sense of this,
note that as the platform team scales, it’s important to continually
balance standardization and autonomy. As Galo Navarro explains,
“To make meaningful impact, platform teams depend on having standards
in their organization. Trying to support every possible language ecosystem,
framework, DB, messaging system, and whatnot spreads platform teams too
thin to be effective.” Clearly defined processes are also important; these act
as a contract between the platform team and its internal customers.

Like less-evolved companies, the highly evolved organizations cite lack
of time as their top challenge, though it’s a significantly lower percentage
reporting this than in the least-evolved organizations. We think this means
lack of time to do all the things their customers are asking them to do.
These teams have proven their value at this point, and their services are in
high demand. Tying for second place among highly evolved teams: lack of
standardization and onboarding development teams to the platform.

Challenges to providing an internal platform

Low evolution Mid‑level evolution High evolution
• Lack of time

• Lack of empowerment from leadership

• Lack of standardization (tie with below)

• Lack of technical skills (tie)

• Lack of time

• Lack of standardization

• Lack of clearly defined practices (tie with below)

• Lack of technical skills (tie)

• Lack of time

• Lack of standardization (tie with below)

• Onboarding dev teams to the platform (tie)

 Scaling DevOps practices with internal platform teams

< Back to Contents 212020 State of DevOps Report | presented by Puppet and CircleCI

https://srvaroa.github.io/paas/infrastructure/platform/kubernetes/cloud/2020/01/02/talk-how-to-build-a-paas-for-1500-engineers.html
http://puppet.com
http://circleci.com

We call out security as a measure on its own, both to highlight its
importance and to make sure people beyond the dedicated security team
keep security in mind when adding and modifying capabilities. We also
measure conformance to internal and external security policies.

The final measure is developer productivity. A platform team that
builds shared components, libraries and tooling allows developers to
move demonstrably faster than they would without such a team. At
some scale, you can get to the point where hiring an engineer to work on
developer tooling has the equivalent impact on output of hiring a product
team engineer on multiple teams. For more on thinking about developer
productivity, this is my favorite resource: www.gigamonkeys.com/flowers.

The ROI of your platform
Your firm (or your team) probably has some idea of what downtime costs.
If you don’t, that is the right place to start. Once you know the approximate
cost of downtime, you can begin calculating the value of shrinking your
downtime and increasing your uptime. Apart from actual transaction value,
make sure you do your best to quantify improved user trust and confidence.

Next you should figure out the costs associated with running disparate
systems. Can you achieve the same uptime by consolidating these systems
into a platform? The consolidation effort could be quite expensive, so you’ll
need to factor the transition time and effort into your ROI model.

A successful platform is normally measured by adoption
and usage — important metrics to track to ensure
you’re serving your internal customers. From a business
perspective, though, you also need to show that your
platform delivers a worthy return on the investment your
organization makes to build, run, maintain and evolve it.

At CircleCI, our platform engineering organization is
measured on four things: availability, cost, security,
and developer productivity.

Our platform engineering organization was created with availability as
a key objective. We standardized our tools and capabilities so we could
thoroughly understand how they work, what the failure modes are, the
lifecycle expectations of a component, and to make sure components can
handle millions of requests per hour.

On the other side of the coin is cost. You can improve availability by
overprovisioning capacity or buying additional tooling, but that may cause
you to exceed your cost targets and depress your margins. You can lower
costs by turning off services or capabilities, but that can hurt your resilience
and availability. That’s why these two items are inextricably coupled.

How do I know if my platform is successful?
A case study in platform engineering

Mike Stahnke,
Vice President of Platform
CircleCI

 Scaling DevOps practices with internal platform teams

< Back to Contents 222020 State of DevOps Report | presented by Puppet and CircleCI

http://www.gigamonkeys.com/flowers
http://puppet.com
http://circleci.com

Another element in your ROI calculations is developer or application team
productivity. What is the value of those engineers’ time? What percentage
of their time is spent on tasks that a platform could handle? You may be
able to show a good return on investment from saved developer time alone,
but you should also take into account what those developers could be
doing once their time is freed up. They could be getting features to market
faster, integrating a new capability, and reducing technical debt elsewhere
in the technology stack.

Once you’ve made a decision to invest in a platform, other metrics may
become important to display and share. Here are some metrics we make
available for our internal teams at CircleCI:

• 28-day rolling and/or seven-day rolling uptime

• Incident frequency

• Mean investigation time per incident (e.g., how long it takes to find out
what went wrong)

• Percentage of services or capabilities with vulnerability-patching SLAs

• Cost per work unit

• Developer throughput rate

• Deployment rate

• Rollback rate

• Conformance metrics (how close a service is to using “paved roads,” i.e.,
standards provided by the platform team)

Cost per work unit will always be pretty specific to the engineering or
business goals, so they vary from company to company. For CircleCI,
conformance metrics tell us how close a service is to using our most
desired configurations, including paved roads for development,
documentation, deployment, testing, rollback, canary deployments,
dependency updating and a few other things.

When services have a higher conformance score, that means
they are taking fuller advantage of the capabilities of our platform.
This is the direction we want every service to move in.

— Mike Stahnke, Vice President of Platform, CircleCI

 Scaling DevOps practices with internal platform teams

< Back to Contents 232020 State of DevOps Report | presented by Puppet and CircleCI

http://puppet.com
http://circleci.com

Change management
in the DevOps era
If your company is not yet moving towards a platform approach,
and it looks like too large a leap to make right now, don’t despair.
You can still speed software delivery by addressing change
management process in your company. In this chapter, we
examine what we learned about change management patterns
within companies. We’ll show you what does and doesn’t work,
and how you can employ DevOps principles to transform
change management into an effective and enabling process.

< Back to Contents 242020 State of DevOps Report | presented by Puppet and CircleCI

http://puppet.com
http://circleci.com

In the past decade, we’ve seen DevOps practices upend the way
software release teams work. Here are the most prominent changes.

From To

Waterfall projects and
big heavy releases.

Small batches delivered frequently,
leading to more frequent deployments
and faster cycle times.

Slow feedback cycles with a lot
of manual reviews and approvals;
long wait times.

Real-time feedback and metrics
driven by automated workflows.

Process-heavy and time-intensive
management of change requests.

Having to provide context to
approvers who are not directly
involved with the work.

Collaborative software development,
automated delivery pipelines and
decisions made by teams doing the
work.

Teams are organized by technology or
functional boundaries.

Manual handoffs between
siloed teams.

Misaligned incentives.

Early stakeholder involvement across
the value stream at every stage of the
delivery lifecycle: design, build, deploy,
monitor and maintenance.

Stakeholders include auditing,
compliance, change management,
security, network, storage, middleware
and enterprise architects.

Teams are aligned to business goals.

“ The problem isn't change, per se, because change
is going to happen; the problem, rather, is the
inability to cope with change when it comes.”

— Kent Beck, Extreme Programming Explained: Embrace Change

 Change management in the DevOps era

< Back to Contents 252020 State of DevOps Report | presented by Puppet and CircleCI

http://puppet.com
http://circleci.com

Even as we see delivery teams successfully shift their thinking and practices,
it remains much harder to change deeply ingrained structures and processes
across a large organization. Change management is one of the processes
that is hardest to shift.

Pivoting to a new way of doing things requires leadership support,
organizational discipline, and a ton of collaboration and alignment across
every layer of the organization. But the large legacy environments that
have evolved in most big organizations are not easy to pick apart and
rework. They are often maintained by many different teams, each owning
a piece of the technology stack. The teams that understand the work
usually lack authority to approve their own changes; instead, change
approval is often assigned to a committee (such as a change approval
board) that is not involved with the actual work, and does not have as much
understanding of it.

All these layers exist because the large legacy environment is where the
organization’s primary business lives. So any changes feel risky, and having
lots of process and bureaucracy feels like you’re keeping that business safe.

Unfortunately, all this process holds organizations back. They simply can’t
release software — whether it’s for external or internal customers —
fast enough to meet the needs of the business. Meanwhile, competitors
who’ve made their change management more effective are able to release
quickly and repeatedly, putting them way out in front.

Change management and ITIL

Many organizations that have been around awhile based their change
management processes on the ITIL framework. Developed by the
British government's Central Computer and Telecommunications
Agency (CCTA) during the 1980s, ITIL (Information Technology
Infrastructure Library) was a response to the agency’s growing
dependence on information systems. According to Axelos, the
organization that took over ownership of ITIL in 2013, at least
90 percent of the Fortune 500 have adopted ITIL.

The purpose of ITIL is to help the business manage risk by:

• Improving alignment between IT and the business

• Increasing the quality of IT services while decreasing their cost

Ironically, in their efforts to implement ITIL, large organizations often
created complex processes that require entire teams just to traffic
and manage changes. Rather than improving alignment between IT
and the business, many companies built cumbersome bureaucracies
that take enormously long times to approve any change. Of course,
this actually decreases the effectiveness of IT services while
increasing their cost.

Interestingly, the ITIL world seems to have acknowledged these
issues. The latest ITIL version, ITIL 4, departs significantly from
previous versions with its focus on change enablement and guiding
principles drawn from the key DevOps themes of collaboration,
centering on value, rapid iteration and feedback.

 Change management in the DevOps era

< Back to Contents 262020 State of DevOps Report | presented by Puppet and CircleCI

https://www.axelos.com/
http://puppet.com
http://circleci.com

We wanted to see whether change management effectiveness correlated
with DevOps evolution. To measure change management effectiveness,
we looked at three dimensions:

Implementation success. We looked at change failure rate and
deployment frequency. Ideally, firms should be able to make changes
much more frequently, recover quickly from failures and learn from them.

Level of efficiency. We wanted to know how efficient the change
management process is, based on the following:

• A mandatory waiting period of less than two weeks

• Changes require only one approval

• Changes are implemented correctly and do not need to be backed out

• Approval by someone who has the right skills to make a
proper assessment

• Little time required for documenting changes

Performance sentiment. As a proxy for objective evaluation of
each respondent's organization, we developed this metric. We asked
respondents whether their company's change management procedures:

• Reduce risk

• Reduce downtime related to service incidents

• Provide information that is useful to the organization

• Ensure that knowledge and information are shared with
appropriate stakeholders

• Facilitate the rate of change our business needs

• Provide an appropriate level of review and approvals based on the
evaluated risk level of a change

DevOps evolution and change management effectiveness

 Change management in the DevOps era

< Back to Contents 272020 State of DevOps Report | presented by Puppet and CircleCI

http://puppet.com
http://circleci.com

Approaches to change management
To investigate change management, we asked our survey respondents
about a number of different practices in their workplaces. These can be
sorted into two buckets: change approval processes, and the degree to
which change implementation has been automated.

As we analyzed these answers, we discovered significant differences
between survey respondents, and were able to categorize them into four
clusters. Each cluster has a distinct approach to change management:

• Operationally mature. High levels of both process and automation.

• Engineering driven. High emphasis on automation.

• Governance focused. High emphasis on manual approvals and low
emphasis on automation.

• Ad hoc. Low emphasis on both process and automation.

Together, these three dimensions — implementation success,
level of efficiency and performance sentiment — make up our
measure of change management effectiveness.

We found that change management effectiveness increases as
organizations evolve their DevOps practices. While the differences
aren’t enormous, they are statistically significant.

We speculate that the differences are not dramatic because effective
change management requires many components that stretch
far beyond the specific DevOps practices we’ve mapped in our
DevOps evolution model. These additional components include supplier
relationships, incident management, risk management, value stream
optimization, and more.

Most of the key practices in the DevOps evolution model revolve around
standardization of tools, technology, configurations, infrastructure and
patterns — work that is done by technology-oriented teams to lay the
foundation for greater business agility and innovation. Now let’s consider
the 34 practices described in ITIL 4. There are just three technical
management practices: deployment management; infrastructure and
platform management; and software development and management.
There are 13 additional service management practices, not to mention
the 14 general management practices! Of course, there is overlap
between many of these practices, but generally speaking, the DevOps
evolution model represents a small slice of overall service management
as it is commonly practiced in enterprise environments.

Nonetheless, there is a statistically significant relationship between
DevOps evolution and change management effectiveness. In particular,
the DevOps values of allowing employees a high degree of autonomy
and involvement, sharing and communication, and collaboration, all play
a role in effective change management.

0%

20%

40%

60%

80%

100%

Low Mid-level High

8%
15% 22%

53%
60%

65%

39%
25%

12%

DevOps evolution

Medium CM e�ectiveness High CM e�ectivenessLow CM e�ectiveness

Change management effectiveness and level of DevOps evolution

 Change management in the DevOps era

< Back to Contents 282020 State of DevOps Report | presented by Puppet and CircleCI

http://puppet.com
http://circleci.com

Change approval processes
The questions we asked about change approval revealed two different
approaches: orthodox and adaptive. We also looked at how frequently
organizations evade their change management processes.

Orthodox change approval is based on strict adherence to
established practices:

• Changes are approved by a committee (e.g., a change approval board).

• Approval is required from multiple levels of management.

• Changes can be made only in predefined windows.

• The person requesting the change cannot implement the change
(separation of duties).

Adaptive change approval is based on input from teams that are close to
the work. We call this “responsible autonomy.”

• Changes are approved by the team implementing the change.

• Post-implementation reviews identify opportunities for improvement.

• Pre-approval is based on proof from the delivery team that the change can
be made safely.

Evasion of change approval process happens in a couple of ways:

• Changes are approved without proper consideration (i.e. rubber-stamped).

• Team members explicitly bypass the change management process and
there are no consequences.

What does “separation of duties” really mean?

Some companies implement controls to limit access to IT systems or
require manual approvals, believing that regulations — for example,
the Sarbanes-Oxley Act or SOC 2 — mandate separation of duties.

This is often interpreted to mean that people who can commit to a
code repository must not be allowed to deploy that same code to
production. Indeed, many auditors and security professionals are
convinced that this is what the regulations say.

In reality, regulations can frequently be satisfied with the combination of:

• Automated deployment

• A requirement that someone other than the code author must
review and approve the change

• Supporting controls such as strong audit logs and access control

If your automation efforts are being hamstrung by controls such as
these, we suggest you focus on building a collaborative relationship
with your auditors and risk management teams. Work together on
genuinely satisfying regulatory requirements in an efficient and
secure manner. We’ve seen very few people actually reach out to their
risk teams to collaborate, but the ones that do nearly always succeed.

 Change management in the DevOps era

< Back to Contents 292020 State of DevOps Report | presented by Puppet and CircleCI

http://puppet.com
http://circleci.com

Degree of automation in change implementation
Change implementations can be highly automated, or not automated
at all. Methods range from a manually implemented change with a
secondary review — no automation — to a fully automated deployment of
the change, with automated testing providing risk assessment during the
rollout, and automated progression when the tests pass.

Below are the areas we asked about to determine the degree of automation
applied to changes. The possible answers are below the bolded text.

Does the CI/CD process model traditional change management
processes, or is it independent?

• Work going through the CI/CD system requires a ticket.

• Changes using CI/CD pipelines are not subject to traditional change
reviews and processes.

Test and deployment automation: how changes move through the
assurance process.

• Changes are run through automated acceptance tests.

• Changes are deployed automatically after automated tests pass.

Manual risk mitigation

• A person must manually review actions to be performed.

Automated risk mitigation includes more advanced deployment
techniques to compartmentalize risk and enable changes while keeping
services online. These include:

• Feature flags

• Blue/green deployments

• Canary deployments

• Active-active high availability clusters

How changes are typically written: Writing changes in code is a
foundational practice that enables capabilities such as automated testing,
automated deployment and automated risk mitigation. We asked survey
respondents how their changes are normally written.

• Changes are written primarily in code.

• Changes are written primarily in prose.

Changes as code

When your changes are written in code, they may have the same
properties as changes written in prose. But because they follow
coding practices, your changes can be authored, tested, reviewed and
deployed like code.

The real power here is that your changes can be subjected to any
validation techniques that are available for code. Plus, you can roll
forward to a previously stable implementation if the change does not
go as planned.

Changes implemented in code also have the advantage of sometimes
escaping the traditional — and slow — change management processes
that most companies use. That’s because they follow development
deployment guidelines rather than an ITIL-based review process.
Going through the development process instead of the change-review
process usually results in greater velocity, and often more consistency.

Common changes produced in code include changes through
infrastructure automation tools, delivering new capabilities in software,
or updating software packages.

 Change management in the DevOps era

< Back to Contents 302020 State of DevOps Report | presented by Puppet and CircleCI

http://puppet.com
http://circleci.com

The four approaches to
change management
We plotted the four change management approaches on a matrix (see below).
The x-axis represents orthodox approvals, and the y-axis represents
automation, meaning a combination of automated test, automated deployment
and automated risk mitigation.

Note that the junction of the four quadrants represents the average score
of all four clusters. The top right quadrant represents “above average” for
both orthodox approvals and automation, while the bottom left quadrant
represents “below average” for both dimensions.

What is toil?

In “Site Reliability Engineering: How Google Runs Production Systems”
(essays written by a number of authors at Google), toil is defined as
“work tied to running a production service that tends to be manual,
repetitive, automatable, tactical work, devoid of enduring value, and
that scales linearly as a service grows.” Google’s goal is to keep toil at
less than 50 percent of each SRE’s work hours, and for engineering work
to account for at least 50 percent.

Engineering work includes both software engineering (writing or
modifying code, including infrastructure code and automation scripts)
and systems engineering (configuring production systems including
monitoring setup, load balancing configuration, server configuration, etc).

For our survey respondents, the top four sources of toil were interrupts
(non-urgent service-related messages and emails); urgent on-call response;
deploying patches, releases and pushes; followed by building testing
environments and logging. Respondents reported roughly the same sources
of toil, regardless of the overall time they dedicated to engineering.

Our analysis also revealed that toil varied across teams. Site reliability
engineering, platform engineering, DevOps teams and application
development/software engineering teams spend more of their time
on engineering — just 25 percent of respondents from these teams
reported more than 40 percent of their work time goes to toil. By contrast,
40 percent of respondents from application security, cloud, and
compliance and audit teams spend over 40 percent of their time on toil.

Information security, infrastructure/IT operations and quality assurance/
quality engineering fall in the middle — about a third of these
respondents spend over 40 percent of their work time on toil.

HIGH AUTOMATION�
LOW ORTHODOX APPROVALS

LOW AUTOMATION�
LOW ORTHODOX APPROVALS

HIGH AUTOMATION�
HIGH ORTHODOX APPROVALS

LOW AUTOMATION�
HIGH ORTHODOX APPROVALS

Orthodox Approvals– +–

+

Engineering driven

Governance focused
Ad hoc

A
ut

om
at

io
n

Operationally mature

Change management approaches by level of automation
and orthodox approval

 Change management in the DevOps era

< Back to Contents 312020 State of DevOps Report | presented by Puppet and CircleCI

http://puppet.com
http://circleci.com

Four approaches to change management: distinguishing features

Operationally mature Engineering driven Governance focused Ad hoc

Approvals High orthodox approvals
High adaptive approvals

Low orthodox approvals
High adaptive approvals

High orthodox approvals
Low adaptive approvals

Low orthodox approvals
Low adaptive approvals

Automation High test and
deployment automation
High automated risk mitigation

High test and
deployment automation
High automated risk mitigation
Highest number of changes
written in code

Low test and
deployment automation
Low automated risk mitigation

Low test and
deployment automation
Low automated risk mitigation

Industries Technology
Industrials & manufacturing
Financial services
Energy & resources

Technology
Financial services

Technology
Financial services
Healthcare, Pharmaceutical and
Life Sciences

Technology
Education

Company size Primarily mid-market organizations Primarily smaller organizations Primarily larger organizations Primarily smaller organizations

Annual revenue:
Small = under $100M
Mid-market = $100M - $1B
Enterprise = $1B+

11% small
78% mid-market
10% enterprise

37% small
24% mid-market
26% enterprise

24% small
27% mid-market
33% enterprise

43% small
17% mid-market
19% enterprise

Department 46% IT
37% InfoSec
17% Engineering

53% Engineering
39% IT
5% InfoSec

55% IT
37% Engineering
5% InfoSec

48% Engineering
44% IT
4% InfoSec

Engineering effort 63% report toil is over 30%
of work hours
46% report engineering is more
than half of work hours

67% report toil is 30% or less
of work hours
47% report engineering is more
than half of work hours

53% report toil is 30% or less
of work hours
34% report engineering is more
than half of work hours

64% report toil is 30% or less
of work hours
37% report engineering is more
than half of work hours

Each cluster has a distinct profile based on specific elements we asked our respondents about. These include the size of the companies and
the industries they operate in; how they manage approvals; what gets automated and the degree of automation; and how much of the work
week goes into toil (manual, repetitive work that can be automated, see also the sidebar on page 31, What is toil?) versus engineering work.
We’ve summarized each cluster’s distinguishing features in the chart below, and further down, and you’ll find a fuller discussion of each group.

 Change management in the DevOps era

< Back to Contents 322020 State of DevOps Report | presented by Puppet and CircleCI

http://puppet.com
http://circleci.com

Operationally mature organizations that have been around a while — such as
larger, higher-revenue companies in traditional industries — have mature
processes in place to safeguard their production systems. They are also big
enough to have multiple business models and revenue streams.

Older industries have been disrupted by digital innovation, so
digital transformation is recognized as a necessary strategy for remaining
competitive. We think this helps explain why there’s high use of automation,
as well as manual approval, and why there’s a mix of orthodox and adaptive
approvals for this group.

Faced with the pressure to move fast and compete on one side, and the
weight of old processes on the other, it’s not surprising that respondents
from operationally mature companies report it’s common to evade
change management procedures. Many changes get rubber-stamped,
and teams regularly bypass their change management procedures
without consequences.

When it comes to toil, operationally mature companies continue to present
an interestingly mixed picture. Nearly two-thirds (63 percent) of respondents
said they spend over 30 percent of their time on toil. However, nearly half
(46 percent) spend more than half their weekly work hours on engineering.

This group has the highest levels of both orthodox approvals and adaptive
approvals. It also has the highest level of automation. These companies
employ sophisticated risk mitigation techniques, yet also rely heavily on
manual reviews. This may seem paradoxical, and indeed we were initially
surprised by the high levels of both orthodox and adaptive approvals, as
well as the seemingly contradictory high manual reviews and high degree
of automation.

When we looked at the firmographic makeup of this group, these unexpected
findings began to make more sense. We found that:

• The majority of respondents in this group work at larger mid-market
organizations — 78 percent are at companies with revenue between
$100 million to $1 billion.

• Almost two-thirds of respondents in this group (58 percent) work in large
organizations (more than 500 employees). Half are at companies employing
500 to 1,000 people, and half at companies with 1,000 to 5,000 employees.

• They are more likely to work in old-line industries than in technology
companies: energy and resources; financial services; and industrials
and manufacturing.

Distinguishing features of operationally mature companies
“Even well-meaning gatekeepers slow innovation.” — Jeff Bezos

 Change management in the DevOps era

< Back to Contents 332020 State of DevOps Report | presented by Puppet and CircleCI

http://puppet.com
http://circleci.com

Distinguishing features of
governance‑focused companies
Respondents in this group skew towards larger organizations, with
40 percent working in companies that employ more than 5,000 people.
Thirty-three percent of respondents are at organizations with annual
revenue above $1 billion. The highest industry representation is
technology, at 29 percent, with financial companies next at 20 percent.

This group relies heavily on orthodox approvals and manual reviews.
These companies scored low for automation across the board —
testing, deployment and risk mitigation. They make up for lack of
automation with human oversight, which slows them down even more.

Unlike the operationally mature group, which also relies heavily on process,
the governance-focused companies tend not to evade the process
— they accept it. Few changes are reviewed post-implementation to
identify opportunities for improvement, and few changes are pre-approved,
suggesting a culture where continuous improvement is not valued.

Toil is high for the governance-focused companies. Nearly half (47 percent)
of respondents in this group said more than 30 percent of their work is toil.
They spend the least amount of time on engineering work, with just a third
(34 percent) reporting more than 50 percent of weekly work hours spent
on engineering.

Distinguishing features of
engineering‑driven companies
The engineering-driven group reported high adaptive approvals and low
orthodox approvals. These companies scored high on automated testing
and sophisticated risk mitigation, though a bit lower on deployment
automation than we expected.

This group stands out from the others because the majority of their
changes are written in code versus prose. This means they have the skills
to automate repetitive operational tasks.

The majority of respondents work in an engineering or development
department, with 34 percent part of an application, software development
or engineering team. Twenty-five percent work in a DevOps team.

Not surprisingly, the majority of respondents work in technology
companies — primarily small businesses with under $100 million in
annual revenue. They reported less separation of duty than both the
governance-focused and operationally mature groups, and also that teams
in their companies have more autonomy to approve their own changes.

Given higher levels of automation and less cumbersome approvals,
we weren’t surprised to find that respondents in engineering-driven
companies reported the lowest level of toil and highest level of
engineering work of all our clusters. Two-thirds (67 percent) said toil
accounts for 30 percent or less of their weekly work hours, and almost half
(47 percent) report spending more than half their hours on engineering.

 Change management in the DevOps era

< Back to Contents 342020 State of DevOps Report | presented by Puppet and CircleCI

http://puppet.com
http://circleci.com

Distinguishing features of
ad hoc companies
This group stands in stark contrast to the operationally mature companies.
They score low across all dimensions: automation, approvals and
engineering work. Results for this group show their approach to change
management is indeed ad hoc: They have very little orthodox approval
process, yet rely heavily on manual review.

For ad hoc companies, the team has autonomy to approve and implement
changes, most likely because the structure is light and the number of
stakeholders is small. As a result, change success is largely dependent on
employee competencies rather than carefully thought-out policies.

Of this group, the plurality of respondents (43 percent) work at firms with
annual revenue under $100 million, and 57 percent of respondents are at
firms with fewer than 1,000 employees. The majority of respondents work in
technology and education, so they don’t operate under the same regulatory
constraints that drive the governance-focused group.

Because this group is made up of smaller organizations, we surmise these
respondents operate in companies where communication is easier and more
immediate, simply because there are fewer engineers. It’s possible these
companies also are subject to less pressure from regulatory constraints, so
they feel less need to formalize approval processes or automate.

Over a third (34 percent) of respondents in ad-hoc companies reported
spending more than 30 percent of their time on toil. A slightly larger number
(37 percent) also reported spending over 50 percent of their time on
engineering work.

 Change management in the DevOps era

< Back to Contents 352020 State of DevOps Report | presented by Puppet and CircleCI

http://puppet.com
http://circleci.com

When we looked at change management effectiveness in aggregate
for each group, it’s not surprising we discovered the engineering-driven
companies had the highest level of change management effectiveness.
The ad hoc companies came in second for high effectiveness. This is
because their levels of inefficiency are low due to lack of process and
relatively high implementation success. The remaining two groups, which
rely heavily on orthodox approvals, did not score high on effectiveness.

Our data reveals several important takeaways about the factors that
influence change management effectiveness and efficiency. Below these
key takeaways, you'll find a fuller discussion of each cluster.

What drives change management effectiveness?

Orthodox approvals make you less efficient
Orthodox approvals make the change management process less efficient.
Firms with high orthodox approvals are nine times more likely to be inefficient
than firms with low orthodox approvals. The correlation is clear and strong.

Change management approaches and level of effectiveness

0%

20%

40%

60%

80%

100%

Operationally
mature

Governance-
focused

Ad hoc Engineering-
driven

3%
20%

32%

59%

67%
60%

38%

11%

58%

31%
13% 8%

Medium CM e�ectiveness High CM e�ectivenessLow CM e�ectiveness

0%

20%

40%

60%

80%

100%

Low Medium High

9%

58%

83%

Level of orthodox approvals

% High or very high ine�iciency
A low rate indicates higher e�iciency

Level of orthodox approvals and rates of high inefficiency

 Change management in the DevOps era

< Back to Contents 362020 State of DevOps Report | presented by Puppet and CircleCI

http://puppet.com
http://circleci.com

Automation gives teams confidence in
change management
Automated testing and deployment and advanced risk mitigation
techniques are strongly correlated with performance sentiment.
Teams that automate and practice advanced risk mitigation believe that
their change management process adds value in the following ways:

• Reduces risk, and provides an appropriate level of review and
approval based on evaluated risk for any change

• Reduces downtime to services

• Provides useful information

• Ensures that knowledge and information are shared with stakeholders

• Facilitates a pace of change that advances the business

0%

20%

40%

60%

80%

100%

Low Medium High

18%

43%

77%

Level of automated risk mitigation

% High or very high performance sentiment

Level of automated risk mitigation and performance sentiment

0%

20%

40%

60%

80%

100%

Low Medium High

24%

48%

74%

Level of testing & deployment automation

% High or very high performance sentiment

Level of test & deployment automation and performance sentiment

 Change management in the DevOps era

< Back to Contents 372020 State of DevOps Report | presented by Puppet and CircleCI

http://puppet.com
http://circleci.com

Giving people agency over the process
results in higher effectiveness
Employee involvement in the change management process correlates
strongly with effective change management. The more input and
influence employees have over their change management processes,
the more they understand and enjoy using them, which helps explain
why they’re seen as more effective.

We found that:

• Firms with high employee involvement in the change management
process are more than five times as likely to have highly effective
change management than firms with low employee involvement.

• Employees who report high involvement are also 13 percent more
likely to understand and enjoy the process.

• Engineering-driven organizations involve employees the most in the
change management process, and governance-focused companies
the least.

• Governance-focused companies had the lowest employee
involvement, reflecting their bureaucratic nature. When
organizations rely on process and centralized decision-making
rather than assigning more responsibility to employees, people
feel disempowered and unengaged, with little or no motivation to
challenge the status quo. This of course makes it much harder for
an organization to change and evolve.

• Engineering-driven organizations tend to involve employees
much more in the change management process — an attribute
that’s typical of workplaces where the DevOps principles of
feedback loops and continuous learning are valued.

0%

20%

40%

60%

80%

100%

Low Medium High
Level of employee involvement

% High
CM e�ectiveness

7%
12%

39%

Employee involvement and
change management effectiveness

0%

20%

40%

60%

80%

100%

Low Medium High

5%

29%

66%

Level of employee involvement

% High understanding
& enjoyment of CM process

Employee involvement and
understanding & enjoyment of CM process

0%

20%

40%

60%

80%

100%

Operationally
mature

Governance-
focused

Ad hoc Engineering-
driven

12% 18%
32%

83%
52%

52%

5%

12%

54%

34% 30%
16%

Medium employee
involvement

High employee
involvement

Low employee
involvement

Change management approach and level of employee involvement

 Change management in the DevOps era

< Back to Contents 382020 State of DevOps Report | presented by Puppet and CircleCI

http://puppet.com
http://circleci.com

Operationally mature companies
Operationally mature organizations scored low on implementation success,
with lower deployment frequency and change success rate, and longer
lead time for changes. They also had the lowest levels of efficiency, with
93 percent reporting low or very low efficiency.

We wanted to see whether companies in this group that have reached a high
level of DevOps evolution perform any differently from the rest. As it turns out,
the highly evolved operationally mature organizations excel when it comes to
remediating security vulnerabilities in less than one day — 75 percent of them
can do this. A large majority (68 percent) are able to restore services less than
a day after an incident. These teams clearly place a high value on keeping
systems running, reacting to incidents and events quickly as they occur.

We surmise that companies in this highly evolved, operationally mature
group have a lot of consumers and customers relying on their products
or services, and therefore have a lower tolerance for change-induced risk.
These organizations value uptime over new feature delivery or more frequent
deployments. We shouldn't be surprised: Every deployment presents the risk
of a service interruption.

We were surprised that respondents from the operationally mature companies
had the highest performance sentiment of all four clusters. People in these
organizations believe that their change management process really is getting
the job done. Perhaps this belief in high performance — despite demonstrably
lower performance — reflects a culture that deplores risk, and therefore
values stability more highly than rapid throughput. It may also be the simple
human tendency to believe that when you’ve put in a lot of effort, and have
lots of documentation and artifacts to show for it, you’ve improved things.

The flip side of having such standardized and formal processes is that it’s
harder to adapt them to changing business needs. So they become a drag on
progress and innovation.

0%

20%

40%

60%

80%

100%

Implementation success E�iciency Performance sentiment

7% 14%

33%

25%
42%

2%

18%

59%

5%
25%

68%

2%

Low High Very highVery low

Operationally mature companies
and change management effectiveness

0%

20%

40%

60%

80%

100%

On demand
Deployment
frequency

< 1 day
Lead time

for changes

< 1 day
Time to restore

service after
incident

< 1 day
Time to fully

remediate
critical security
vulnerabilities

8%

68%
75%

14%

Performance outcomes of
high-evolution operationally mature companies

 Change management in the DevOps era

< Back to Contents 392020 State of DevOps Report | presented by Puppet and CircleCI

http://puppet.com
http://circleci.com

Engineering‑driven companies
In contrast to the operationally mature organizations, engineering-driven
companies have the greatest implementation success and highest levels
of efficiency. Oddly, though, respondents in these companies perceive their
change management processes to be less effective.

This paradox makes sense when you consider that engineering-driven
companies deploy far more frequently than companies in the other clusters.
If you’re making 500 changes per week, for example, and even 1 percent
of these changes fail, that’s one incident per day for the team to deal with.
Low as that percentage is, one incident per day can still feel like you’re
having a lot of failures.

Another observation: Unlike operationally mature organizations that accept
the status quo, engineering-driven companies tend to value continuous
improvement, which presupposes taking a critical view of the status quo.

Our stats on the engineering-driven organizations that are highly evolved in
their DevOps journeys demonstrate that these companies value releasing
new features quickly to their customers. Forty-five percent are able to deploy
on demand, and 38 percent can deploy a change in less than one day.

Because they have automated so much of their delivery process, restoring
service and remediating security vulnerabilities is faster, too. Seventy-seven
percent restore service after an incident in a day or less, and 60 percent
fully remediate critical security vulnerabilities in less than one day.

0%

20%

40%

60%

80%

100%

Implementation success E�iciency Performance sentiment

45%
16%

22%
37%

13%

33%

21%

31%

42%

22%
3% 16%

Low High Very highVery low

Engineering-driven companies
and change management effectiveness

0%

20%

40%

60%

80%

100%

On demand
Deployment
frequency

< 1 day
Lead time

for changes

< 1 day
Time to restore

service after
incident

< 1 day
Time to fully

remediate
critical security
vulnerabilities

45%

77%

60%

38%

Performance outcomes for
high-evolution engineering-driven companies

 Change management in the DevOps era

< Back to Contents 402020 State of DevOps Report | presented by Puppet and CircleCI

http://puppet.com
http://circleci.com

Governance‑focused companies
The governance-focused organizations in our survey tended to be larger
companies in financial services and healthcare, both highly regulated
industries. These companies scored very low for implementation success,
and their employees reported low levels of efficiency along with low
performance sentiment. This gloomy view may be simply accurate. It may also
be due to the risk-averse, audit-conscious culture of highly regulated companies.

The governance-focused organizations that are also highly evolved in their
DevOps journeys are quick to restore service — 68 percent can restore
service after an incident in less than one day. Compared to operationally
mature companies, governance-focused companies don’t do as well with
remediating critical security vulnerabilities, though 53 percent are able to
fully remediate security vulnerabilities in less than one day. However, these
organizations are able to deploy changes on demand more frequently than
operationally mature companies — 35 percent can deploy on demand.

0%

20%

40%

60%

80%

100%

Implementation success E�iciency Performance sentiment

19% 11%

33%
34%

29%

9%

19%
18%32%

52%

7%

36%

Low High Very highVery low

Governance-focused companies
and change management effectiveness

0%

20%

40%

60%

80%

100%

On demand
Deployment
frequency

< 1 day
Lead time

for changes

< 1 day
Time to restore

service after
incident

< 1 day
Time to fully

remediate
critical security
vulnerabilities

35%

68%
53%

28%

Performance outcomes for
high-evolution governance-focused companies

 Change management in the DevOps era

< Back to Contents 412020 State of DevOps Report | presented by Puppet and CircleCI

http://puppet.com
http://circleci.com

Ad hoc companies
Companies in this cluster are smaller and less regulated, and many
respondents in this cluster work in education. Despite good scores on
implementation success and high scores for efficiency, respondents’ overall
performance sentiment was not positive.

The number of ad hoc companies that were also highly evolved in their
DevOps journeys was too small to make a reasonably sized sample.
So we aren’t reporting on this group’s performance stats.

We’ve spent some time discussing the ad hoc companies and their
behaviors, because it seems obvious to us that most companies start
out as ad hoc organizations. They're new, they're moving fast, and
software delivery teams are small and intimate enough that they don't need
a lot of process — they can just talk to each other as they deploy changes.

The need to move quickly may be why this group has negative feelings
about their change management processes — they may feel that any
process gets in the way of their work, and that most of it is unnecessary.

What happens as companies grow and become less ad hoc? Our survey
data shows that companies with higher headcount have lower efficiency
and lower performance.

In the chart to the right, you can see that as headcount increases,
there is a corresponding decrease in implementation success and
efficiency; also, orthodox approvals increase. Automation remains flat
as headcount grows. It seems that the common path is to add more
processes to minimize risk, instead of focusing on automation.

0%

20%

40%

60%

80%

100%

Implementation success E�iciency Performance sentiment

36%

5%

27%

42%

16%

37%

21%

14%

45%

16%
2%

38%

Low High Very highVery low

Ad hoc companies
and change management effectiveness

% Medium/High
orthodox approvals

% Very high e�iciency

% High automation of
testing & deployment

% Very high implementation success

0%

10%

20%

30%

40%

50%

<500 500-1,000 1000+

46%

33%

28%

42%

30%
30%

Headcount

23%

36%
47%

2% 0% 1%

Headcount and performance outcomes
for high-evolution ad hoc companies

 Change management in the DevOps era

< Back to Contents 422020 State of DevOps Report | presented by Puppet and CircleCI

http://puppet.com
http://circleci.com

Challenges to automating
the change management process
It's clear that automating the change management process,
shifting approvals to the teams that do the work, and
enabling people to have a voice in the process all make
change management more effective, and improve software
delivery performance (more frequent delivery, fewer failures).

Automating change management does present challenges,
though. It can’t be done with a simple tweak or two from one
person, or even one team. Change management is, as we’ve
seen, complex; automating it requires structural changes that
are possible only when there’s shared focus and collaboration
across multiple teams or departments, as well as their leaders.

We asked respondents about their challenges in automating
the change management process. Their answers revealed
some similarities between our four groups, as well as some
interesting differences.

 Change management in the DevOps era

< Back to Contents 432020 State of DevOps Report | presented by Puppet and CircleCI

http://puppet.com
http://circleci.com

Tightly coupled application architecture. Tightly coupled application
architecture is a major constraint for delivery teams. Updating their
application or service requires coordination with other teams, slowing
down delivery for each team due to complex dependencies. Loose
coupling means that applications are more modular, so teams can deliver
at their own pace using their own workflows. Testing becomes more
manageable, and teams have more freedom to experiment.

Top challenges reported by all groups
Incomplete test coverage was the top response across all groups, followed
by organizational mindset and tightly coupled application architecture.

Incomplete test coverage. Writing good tests that cover every possible
scenario is nearly impossible, especially in complex environments where
there is an endless number of user behaviors, dependencies, dynamic
architectures and more. Authoring tests is difficult: You have to deeply
understand the work the service does, what the user will do with the service
and what a user who doesn’t know much about the service might do with it.
Teams often do a bit of testing, such as unit tests or a set of early integration
tests, but beyond that, they don’t have behavior defined well enough to write
comprehensive tests for it.

For a fully automated deployment, teams may want a lot of tests to
pass before going into staging or production: unit, integration, systems,
performance and user acceptance tests. Many organizations, however, don't
invest this deeply in testing, so they aren't confident enough to move to fully
automated deployment.

Organizational mindset. It’s no surprise that organizational mindset is a
common challenge across each group. We hear this a lot in our work with
companies, and it's the one thing senior leaders and practitioners agree on.

Why is it so hard to overcome organizational inertia? Often, organizations will
try to copy the technical practices of DevOps leaders, neglecting the cultural
aspects that make DevOps transformations successful. When we work with
teams that are resistant to change, it often takes time to build trust between
teams and departments; people also need evidence that the changes will be
beneficial. The people who are pushing the change also need to make it easy
for those adopting the change to do the right thing.

Backlog coupling: Why reducing team dependencies matters

From Evan Bottcher’s post, “What I Talk About When I Talk About
Platforms” on MartinFowler.com

At an Australian telecommunications company, my colleagues did
a study of hundreds of pieces of work or tasks passing through a
delivery centre. Some tasks could be completed by a single team
without dependency, specifically without scheduling work by
members of another team. The tasks that had to wait for another
team were 10x-12x slower in elapsed time. So dependencies have
a real significant impact.

This hurts us in many ways: It hurts in pure throughput and
responsiveness to customer need, and drives us towards more
long-term planning to more efficiently manage dependencies. It also
damages a team’s own accountability for outcomes, and for many
teams I’ve observed this is a motivation-killer. Teams can find it easy
to shift blame and stop seeking their own continuous improvement.

 Change management in the DevOps era

< Back to Contents 442020 State of DevOps Report | presented by Puppet and CircleCI

https://martinfowler.com/articles/talk-about-platforms.html
https://martinfowler.com/articles/talk-about-platforms.html
http://MartinFowler.com
http://puppet.com
http://circleci.com

Governance‑focused organizations lack trust across functional teams.
Lack of trust often goes hand in hand with fear of change. To build trust
and reduce fear, we’ve seen organizations successfully take a two-pronged
approach: automate change, and engage early with the change management
team to show that changes can be made safely with automated processes.
NatWest Group did just that: learn more by watching the webinar Modernising
Change and Release Management: Real Life Examples with RBS Group.

Ad hoc organizations cited lack of skills as an inhibitor. These smaller
organizations often lack enough people to do all the work, so they tend to
prioritize urgent requests over important long-term optimizations. Systems
thinking and global optimization require dedicated focus and time, which can
be scarce if you’re constantly fighting fires or you’re the sole person in your role.
When hiring is not an option, prioritizing problems based on highest potential
return can help build the necessary skills, while also freeing up time to work on
the most important problems. One example of this: standardizing processes
around production deployments, or automating a few common repetitive tasks.

Top challenges by change management approach
Operationally mature organizations have lower risk tolerance.
Due to customer expectations and regulatory constraints, deploying multiple
times a day just isn’t feasible for some industries and products. By adopting
CI/CD practices, you can ensure that you’re always able to deploy on demand,
even if your customers can’t consume all of your changes. If regulatory
constraints are preventing you from making changes faster, see the sidebar
on page 29 What does “separation of duties” really mean?

Both engineering‑driven and operationally mature organizations feel
constrained by their application architecture. In our 2015 State of
DevOps Report, we found that certain architectural characteristics correlate
with high performance:

• Ability to test without an integrated environment

• Ability for devs to get comprehensive feedback from automated tests

• Ability to deploy an application independent of services it depends on

• Use of a microservices architecture

“Applications are rearchitected based on business needs” is a key practice
in Stage 5 — the highest stage — of our DevOps evolution model.
While rearchitecting applications is not easy, it does become significantly
more achievable after standardization, automation and team autonomy
have been established. It’s worth noting that breaking apart a monolithic
application into microservices may be what the business ultimately needs,
but smaller architecture changes (such as replacing a home-grown message
queue with a modern open source component or cloud-based service) can
also add tremendous value.

Top challenges for each cluster in priority order
Respondents in the operationally mature cluster gave equal weight to all challenges.

Engineering driven Operationally mature

• Incomplete test coverage
• Organizational mindset
• Tightly coupled application architecture

• Tightly coupled application architecture
• Customer risk tolerance
• Incomplete test coverage
• Regulatory constraints

Ad hoc Governance focused

• Incomplete test coverage
• Organizational mindset
• Lack of skills within an organization

• Organizational mindset
• Incomplete test coverage
• Lack of trust across functional teams

 Change management in the DevOps era

< Back to Contents 452020 State of DevOps Report | presented by Puppet and CircleCI

https://puppet.com/resources/webinar/modernising-change-release-management-real-life-examples-with-rbs-group/
https://puppet.com/resources/webinar/modernising-change-release-management-real-life-examples-with-rbs-group/
https://puppet.com/resources/report/2015-state-devops-report/
https://puppet.com/resources/report/2015-state-devops-report/
http://puppet.com
http://circleci.com

Break down silos and build empathy. Engage with your change
management, release management, audit and compliance teams.
Understand their fears and motivations, respect their roles, and learn to use
their vocabularies to describe the capabilities your teams can provide.

People who work in these functions tend to be rational and detail-oriented.
In our experience, they are more than willing to collaborate on a more
efficient process that manages risk for the company. They respond well if
you demonstrate that you can perform bounded experiments in low-risk
environments, and provide a plan for iterating on those experiments.

Create feedback loops. Look to build feedback loops from the people
who are bound by change management policies to the people who are
responsible for defining them.

Feedback loops should cover not only sentiment from IT teams, but also
include the introduction of new capabilities. Are you introducing significant
new testing capabilities for your infrastructure-as-code deployments?
Removing all manual deployments and automating them as part of a CI/CD
pipeline? Inform your change management teams about upcoming plans,
and offer them the opportunity to collaborate and shape your designs. You’ll
be making your job easier — and ultimately, theirs too.

Measure the impact of your new approach. It goes almost without saying
that you must establish the metrics you’ll track to prove whether things have
improved. Are you saving time or money? Have you eliminated any wasteful
handoffs or toil? Are your stakeholders satisfied — or even happy — with the
new approach?

All this information should be made visible for the sake of continuous
improvement — and just as important, to deliver much-deserved satisfaction
and recognition to the people who have worked hard for these improvements.

As we like to say in DevOps, “Make your success visible.”

Applying DevOps principles to change management
It’s clear that improving change management presents a lot of challenges for teams. DevOps principles
first arose — and DevOps practices have evolved — to deal with exactly these types of cultural and
structural challenges. We've seen teams successfully modernize their change management practices
through the application of fundamental DevOps principles, so here are our recommendations.

Will Larson, author of “An Elegant Puzzle,” gave a terrific talk titled
Investing in technical infrastructure. We particularly like this quote:

“If you think about infrastructure teams who view themselves as
just a service provider or who view themselves as a cost center…
many of them don’t have a vision of what they’re trying to
ladder up to, so they can only get incremental wins. They can
never get evolutionary or order-of-magnitude wins that come
from composing small series of changes into a broader vision.”

If you want pragmatic tips to help dig yourself out from firefighting
and do more innovation work, be sure to check out Will’s talk.

 Change management in the DevOps era

< Back to Contents 462020 State of DevOps Report | presented by Puppet and CircleCI

https://lethain.com/srecon-emea-2019/
http://puppet.com
http://circleci.com

Security
In our 2019 State of DevOps Report, we examined
how organizations integrate security into the software
delivery lifecycle and what outcomes they achieve.
To determine levels of security integration, we
asked respondents to select the phases of the
delivery lifecycle — requirements, design, building,
testing, and deployment — where security is
integrated. We found that firms that have achieved
higher levels of security integration are much more
likely to be at a high stage of DevOps evolution.

< Back to Contents 472020 State of DevOps Report | presented by Puppet and CircleCI

http://puppet.com
http://circleci.com

With 14 percent of our 2020 survey respondents reporting working in
an infosec department, we wanted to see how things had changed from
last year. In comparing the percentage of respondents at each level
of security integration, we are encouraged to see more organizations
integrating security into two to four stages.

We are also happy to see that security integration is strongly correlated
with the ability to quickly remediate critical vulnerabilities. Of those with
low integration, 25 percent can remediate vulnerabilities within one day,
compared to 45 percent of those with full security integration.

Finally, the self-service offering of security and compliance validation is
positively related to level of security integration. Those with full security
integration are over twice as likely as those with no security integration to
offer security and compliance validation as a self-service capability.

If improving security posture is a top priority for your organization
— and really, who doesn’t want to improve security? — then we stand by
what we said in our 2019 report:

“ Integrating security at every stage of the software delivery lifecycle
is more than just shifting security checks to the left. Security
integration requires a completely different approach, one that
emphasizes cross-team collaboration and empowers delivery teams
to autonomously prevent, discover and remediate security issues.
Breaking down knowledge silos between teams, and collaborating to
improve security both raise overall awareness of security concerns,
making it more likely that everyone — even those outside the security
team — will adopt known patterns for security protection.”

This doesn’t just apply to security, of course, but to all the functions in the
software process.

0%

5%

10%

15%

20%

25%

30%

14%

24%25%22%

16%
13%

17%

29% 29%

12%

Level 1
0 phases

integrated

Level 2
1 phases

integrated

Level 3
2 phases

integrated

Level 4
3-4 phases
integrated

Level 5
All 5 phases
integrated

2019 2020

Level of security integration, 2019 and 2020

0%

10%

20%

30%

40%

50%

60%

70%

Level 1
0 phases

integrated

Level 2
1 phases

integrated

Level 3
2 phases

integrated

Level 4
3-4 phases
integrated

Level 5
All 5 phases
integrated

Self-service security & compliance validation
< 1 day to remediate critical security vulnerabilities

25% 26%
31%

38%
45%

26%

33% 35%

42%

58%

Self-service and fast remediation
at each level of security integration

 Security

< Back to Contents 482020 State of DevOps Report | presented by Puppet and CircleCI

http://puppet.com
http://circleci.com

Conclusion
In every year’s State of DevOps survey, we try to uncover
new findings that will help organizations accomplish their
goals faster, with less pain. We hope this year’s findings around
platform teams and change management help you scale your
DevOps practices more broadly across your organization.

We’d like to hear about your experiences, and your comments
on the report itself. Please get in touch!

You can email us directly at devopssurvey@puppet.com,
or talk to us on Twitter at twitter.com/puppetize

< Back to Contents 492020 State of DevOps Report | presented by Puppet and CircleCI

mailto:devopssurvey%40puppet.com?subject=
https://twitter.com/puppetize
http://puppet.com
http://circleci.com

Alanna Brown Twitter: @alannapb

Alanna is senior director of community and developer
relations at Puppet, where she’s had the privilege of helping
Puppet grow from a small startup to a global brand with
thousands of customers around the world. She conceived
and launched the first annual State of DevOps Survey in
2012, and has been responsible for the survey and report
since then. In addition to heading up DevOps research,
Alanna is also responsible for driving awareness, adoption
and advocacy for Puppet’s product portfolio.

Nigel Kersten Twitter: @nigelkersten

Nigel is field CTO at Puppet, responsible for bringing product
knowledge and a senior technical operations perspective
to Puppet field teams and customers, working on services
strategy, and representing the customer in the product
organization. He also works with many of Puppet’s largest
customers on the cultural and organizational changes
necessary for large scale DevOps implementations. Nigel has
served in a range of executive roles at Puppet across product
and engineering over the last nine years, and came to Puppet
from the Google SRE organization, where he was responsible
for one of the largest Puppet deployments in the world.

Michael Stahnke Twitter: @stahnma

Michael is vice president of platform engineering at CircleCI.
Prior to this, he was at Puppet, running engineering for Puppet
Enterprise, open source Puppet, and SRE. Prior to Puppet he was
an infrastructure architect, team lead and open source evangelist
at Caterpillar Inc., where he spent inordinate amounts of time
with auditors. He was also an author for the State of DevOps
Report in 2018 and 2019. Michael helped get the Extra Packages
for Enterprise Linux (EPEL) repository off the ground in 2005,
is the author of Pro OpenSSH (Apress, 2005), is an organizer of
Devopsdays Madison, and rants continuously about technology,
humans, and computers, while striving to learn more about them.

Author biographies

< Back to Contents 502020 State of DevOps Report | presented by Puppet and CircleCI

http://puppet.com
http://circleci.com

About CircleCI
CircleCI is the leading continuous integration and delivery platform
for software innovation at scale. With intelligent automation and
delivery tools, CircleCI is used by the world's best engineering teams
to radically reduce the time from idea to execution. CircleCI was named
a leader in cloud-native continuous integration by Forrester in 2017
and 2019, and has been named to multiple Best DevOps Tools lists.

About Puppet
Puppet is driving the movement to a world of unconstrained software change.
Its revolutionary platform is the industry standard for automating the delivery
and operation of the software that powers everything around us. More than
40,000 companies — including more than 75 percent of the Fortune 100 —
use Puppet’s open source and commercial solutions to adopt DevOps practices,
achieve situational awareness and drive software change with confidence.
Headquartered in Portland, Oregon, Puppet is a privately held company with
more than 500 employees around the world. Learn more at puppet.com.

About ServiceNow
ServiceNow (NYSE: NOW) gives you the power to make work, work better.
Our cloud-based platform and products streamline and simplify how work
gets done. We help you to scale DevOps to the enterprise, leveraging what
you already have to drive rapid innovation and business value through
automation and improvements to the developer experience. ServiceNow
works for you. To learn more, visit servicenow.com/products/devops.html

About Sysdig
Sysdig is driving the secure DevOps movement, empowering organizations to
confidently secure containers, Kubernetes and cloud services. With the Sysdig
Secure DevOps Platform, cloud teams secure the build pipeline, detect and respond
to runtime threats, continuously validate compliance, and monitor and troubleshoot
cloud infrastructure and services. Sysdig is a SaaS platform, built on an open source
stack that includes Falco and sysdig OSS, the open standards for runtime threat
detection and response. Hundreds of companies rely on Sysdig for container and
Kubernetes security and visibility. Learn more at www.sysdig.com.

< Back to Contents 512020 State of DevOps Report | presented by Puppet and CircleCI

https://mailtrack.io/trace/link/acfa992921cb085fcf4719d86cafcecd51a701f3?url=https%3A%2F%2Fcircleci.com%2Fcontinuous-integration%2F&userId=5048943&signature=e64472687a9ee5be
http://puppet.com
puppet.com
http://servicenow.com/products/devops.html
http://www.sysdig.com
http://puppet.com
http://circleci.com

Who took the survey
As we have for the past nine years, we sought survey respondents from as wide a range
of geographic regions, industries and company sizes as possible. We also hoped for
balanced gender representation.

We feel lucky to have received more than 2,400 responses at a time when people have
been pressured by restrictions due to COVID-19, including working from home while
simultaneously supervising children’s education and looking after family members.

To all 2,415 of you who responded to this year’s survey, our heartfelt thanks.

And to all of you reading this report, may you stay well and productive, wherever you are.

30%

33%

20%
≤ 1%

9%

U.S. &
Canada

Europe

Asia

Australia &
New Zealand

8%Other

Mexico
Central America

& South America

Responses by global region

Other

Nonprofit

Media & entertainment

Insurance

Energy & resources

Telecommunications

Retail, consumer
& ecommerce

Government

Education

Healthcare, pharma
& life sciences

Industrials &
manufacturing

Financial services

Technology

3%
1%

12%

33%

9%

5%

7%

5%

6%

<7%

5%

4%
4%

Principal industry

0% 5% 10% 15% 20%

Don’t know

> $10B

$1B - $10B

$500M - $1B

$250M - $500M

$100M - $250M

$50M - $100M

< $50M

12%

16%

5%

14%

14%

11%

9%

19%

Organization annual revenue
Expressed in USD

 Who took the survey

< Back to Contents 522020 State of DevOps Report | presented by Puppet and CircleCI

http://puppet.com
http://circleci.com

Other

IT (help desk, AV, o�ice support)

Release engineering

Network operations

Compliance & audit

Quality assurance /
quality engineering

Platform engineering

Site reliability engineering

Application security

Information security / security

Cloud

Infrastructure / IT operations

DevOps

Application development

1%1%2%
2%

1%

20%

27%

15%

4%

7%

4%

7%

4%

4%

Team

Engineering / development IT Information security

Other
38% 46% 14% 2%

Department

Prefer to self-describe

Female Male

Prefer not to say

< 1% 82%16% 2%

Gender identity

0% 5% 10% 15% 20% 25% 30%

C-suite

Senior management

Management

Team leader / supervisor

Individual contributor

Partner / contractor

Other

9%

20%

30%

16%

21%

2%

2%

Role within organization

< Back to Contents 532020 State of DevOps Report | presented by Puppet and CircleCI

http://puppet.com
http://circleci.com

	Executive summary
	Introduction
	Scaling DevOps practices with internal platform teams
	Change management in the DevOps era
	Security
	Conclusion
	Author biographies
	Who took the survey

